

Trade of Metal Fabrication - Phase 2

Module 5 Unit 7

Table of Contents

List of Figures 4
List of Tables 5
Document Release History 6
Module 5 - Pipe Fabrication 7
Unit 7 - Pipe Development Unequal Diameter Oblique 'T' Piece 7
Learning Outcome: 7
Key Learning Points: 7
Training Resources: 7
Key Learning Points Code: 7
Circles. 8
Oblique Intersections \& Unequal Pipe Sections 9
Gaskets \& Seals: Pipe Intersections 13
Pipes and Fittings 13
Self Assessment. 20
Index 21

Trade of Metal Fabrication - Phase 2
 Module 5 Unit 7

List of Figures

Figure 1-Circles 8
Figure 2 - Right Cylinders 9
Figure 3 - Oblique Cylinders 10
Figure 4 - Two Connecting Pipes 11
Figure 5 - Elbow Joints 12
Figure 6 - Glass Pipe Assemblies 13
Figure 7 - Pipe Fittings and Couplings 14
Figure 8 - Valves 15
Figure 9 - Compression Joints 16
Figure 10 - Graylock Assembly 17
Figure 11 - Standard Joints for Hygienic Piping 18
Figure 12 - Articulated Marine Loading Arm 19

List of Tables

Trade of Metal Fabrication - Phase 2
Module 5 Unit 7

Document Release History

Date	Version	Comments
$13 / 02 / 07$	First draft	
$13 / 12 / 13$	SOLAS transfer	

Module 5 - Pipe Fabrication

Unit 7 - Pipe Development Unequal Diameter Oblique 'T' Piece

Duration - 8 Hours

Learning Outcome:

By the end of this unit each apprentice will be able to:

- Fabricate an off-set oblique "T" piece in unequal pipe sections
- Develop intersections in unequal pipe sections
- Align flange square to pipe
- Describe the use of abrasive discs, pickling, descaling
- Calculate density of material
- Calculate approximate length of welded joint
- Identify and describe types of gaskets used in pipe gaskets

Key Learning Points:

Sk Rk D	Development of oblique intersections in unequal pipe sections.
Sk Rk D	Indexing of points.
Sk Rk	Fabricate pipe intersections.
Sk Rk	Alignment of sections and flanges.
Rk	Metal protection - surface preparation.
M	Mensuration - density.
M	Geometry - the circle (proportional area).
Rk	Gaskets and seals (rubber, cord, composite materials, cork, o-rings, rope packing).
P	Communication, teamwork and safety awareness.

Training Resources:

- Drawing equipment
- Template material
- Fabrication workshop and equipment, safety clothing and equipment
- Handouts, notes and technical manuals
- Pipe sections M.S. plate
- Samples of gaskets and seals

Key Learning Points Code:

$\begin{array}{llr}\mathrm{M}=\text { Maths } & D=\text { Drawing } & R K=\text { Related Knowledge } \mathrm{Sc}=\text { Science } \\ \mathrm{P}=\text { Personal Skills } & \mathrm{Sk}=\text { Skill } & H=\text { Hazards }\end{array}$

Circles

A circle is a plane figure which is bounded by a curved line called the circumference, which is always the same distance from a fixed point called the centre of the circle. Alternatively we could define a circle by saying that it is the path traced out by a point which moves in a place in such a way that its distance from a fixed point is always constant. This distance from the centre to the circumference is the radius of the circle.

A diameter is a straight line passing through the centre and bounded by the circumference. Clearly the diameter of a circle is twice the radius.
An arc is the name for the part of the circumference between any two points on it.
A chord is a straight line which joins any two points on the circumference.
A segment of a circle is the area which is bounded by a chord and the arc it cuts off.
A sector of a circle is the area which lies between two radii and the arc between them.
A quadrant is the area bounded by two radii which are at right angles to each other and the arc which lies between them. It is a quarter of a circle.
A semi-circle is the area bounded by a diameter and that portion of the circumference which it subtends. As its name implies it is half the area of the circle.

Figure 1-Circles

Oblique Intersections \& Unequal Pipe Sections

$$
\begin{aligned}
& \text { Procedure: } \\
& \text { As above, with two differences. } \\
& \text { Project the true shape of the top } \\
& \text { surface. } \\
& \text { There are various heights, each } \\
& \text { of which is projected across, as } \\
& \text { shown. }
\end{aligned}
$$

Procedure:

- Draw plan and elevation.
- Divide the plan into a number of
pieces, e.g. 12 .
- Project up from the division
points on the plan onto the
surface of the elevation.
- Lay out the stretch-out = $2 \pi r$
and divide this into 12 equal
pieces.
- If is measured with a compass
and marked out 12 times it gives
a fair approximation to $2 \pi r$.
- Draw the panels to the required
height and add top and base.

Figure 2 - Right Cylinders

Figure 3 - Oblique Cylinders

Trade of Metal Fabrication - Phase 2

Figure 4 - Two Connecting Pipes

Trade of Metal Fabrication - Phase 2

Θ

Note: The economy here is
evident. The patterns have been
separated for clarity only.

Figure 5 - Elbow Joints

Gaskets \& Seals: Pipe Intersections

Pipes and Fittings

Figure 6 shows exploded views of straight pipe line assemblies showing both the standard and spherical design of end connections.
Pipes and fittings have conical shape or buttress ends with standard flat face or, if required, the ends are spherically ground.
The system ranges from 15 mm to 600 mm bore and fittings are designed to meet all conditions of piping layout within the limits of the allowable pressure/temperature conditions including straight pipes up to 3 metres long.

Figure 6-Glass Pipe Assemblies

Trade of Metal Fabrication - Phase 2

Standard pipe fittings, shown in plain, threaded and flanged forms. tightly. A sealant is also joint.
used on the pipe. to 'grip' the pipe \quad out to seal ine
 0
0
0
0
0
0
0
0
0
3

근

fitting. The joint is often
simplified in plastic piping
coupled using a union
A. Union
Plain meta
are thread

(1)
Standard couplings, shown in half section. together. aцl leas ol Ino
SMOIt t! pue paleay
S! S! $4 \perp$ '6u!|dnoo solder is part of the
coupling. This is E. Capillary
are also available. spacers and nipple joiners gasket.
 uało s! tu!o! әч1 umous siduis aлe sadid papeaлul B. Threaded

straight pipe and then bolte
to its opposite. The joint is
sealed with a ring seal, or A flainge pipe and then bolted 0
7
$\frac{1}{0}$
0
0

Figure 7 - Pipe Fittings and Couplings

Figure 8 - Valves

Figure 9-Compression Joints

The coupling was originally applied to copper tube of preferred semi-hard condition, but satisfactory joints can also be made on fully hardened tube. For fully annealed copper tube the coupling should be used only for applications where the pressure is low and where the joints are not required to be broken and re-made frequently.

In the past few years the use of nylon and other types of plastic tubing has increased considerably, mainly as a requirement against corrosion, and the coupling is also applied to semi-rigid plastics and nylon tubing, to soft plastics and to glass tube.

Type of Coupling	Size Range	Maximum Pressure	Remarks
Figure 9(a) for metal tube	$1 / 8$ in. (3mm) to 2 in. (50mm) outside diameter in 16 sizes	Hyd. 210 bar to 35 bar Pneum. 70 bar to 11 bar	Pressures according to tube size and based on working temperatures of $30^{\circ} \mathrm{C}$
Figure 9(b) for nylon tube	$1 / 8$ in. $(3 \mathrm{~mm})$ to $3 / 4$ in. $(19 \mathrm{~mm})$ outside diameter in 8 sizes	42 bar to 14 bar	Up to $60^{\circ} \mathrm{C}$ and according to size (can be used up to $100^{\circ} \mathrm{C}$ for intermittent use) $)$
Figure 9(c) for soft plastics and glass	$1 / 8$ in. $(3 \mathrm{~mm})$ to $1 / 2$ in. $(12.5 \mathrm{~mm})$ bore in 5 sizes	Up to 7 bar $(5$ bar for $1 / 2$ in size)	Ethylene-vinyl acetate tube, maximum temperature $60^{\circ} \mathrm{C}$

Figure 10 - Graylock Assembly

Trade of Metal Fabrication - Phase 2
Module $5 \quad$ Unit 7

(a)

IDF fitting with flanged sealing ring
(b)

CB/TS Fitting with tongued rubber
(c)

Figure 11 - Standard Joints for Hygienic Piping

Figure 12 - Articulated Marine Loading Arm

Trade of Metal Fabrication - Phase 2
Module 5 Unit 7

Self Assessment

Questions on Background Notes - Module 5.Unit 7

No Suggested Questions and Answers.

Trade of Metal Fabrication - Phase 2

Module 5 Unit 7

Index

C

Circles, 8

G

Gaskets \& Seals
Pipe Intersections
Pipes and Fittings, 13
Gaskets \& Seals: Pipe Intersections, 13

0

Oblique Intersections \& Unequal Pipe Sections, 9

S

Self Assessment, 20

